

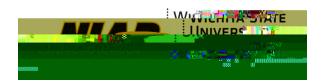
Report No: NCP-RP-2010-010 Rev N/C

Report Date: June 22, 2018

Solvay (Formerly Advanced Composites Group) – MTM45-1 CF0526A-36% RW 3K Plain Weave G30-500 Fabric, 193 gsm Equivalency Statistical Analysis Report – LH Cure Cycle

FAA Special Project Number: SP3505WI-Q

NCAMP Document: NCP-RP-2010-010 N/C


Report Date: June 22, 2018

Elizabeth Clarkson, Ph.D.

National Center for Advanced Materials Performance (NCAMP) National Institute for Aviation Research Wichita State University Wichita, KS 67260-0093

Testing Facility:

National Institute for Aviation Research Wichita State University 1845 N. Fairmount Wichita, KS 67260-0093

Report No: NCP-RP-2010-010 Rev N/C

Report Date: June 22, 2018

Prepared by:

Elizabeth Clarkson

Reviewed by:

Jonathan Tisack

Katherine Carney

Approved by:

Royal Lovingfoss

May 22, 2018

NCP-RP-2010-010 Rev N/C

TABLE OF CONTENTS

1.	Introduction	5
	1.1 Symbols and Abbreviations	6
	Background	
	2.1 Results Codes	
	2.2 Equivalency Computations	

List of Tables

Table 1-1 Test Property Abbreviations	6
Table 1-2 Environmental Conditions Abbreviations	
Table 2-1 One-sided tolerance factors for limits on sample mean values	.10
Table 2-2 One-sided tolerance factors for limits on sample minimum values	.11
Table 3-1 "% Failed" Results Scale	
Table 3-2 Summary of Equivalency Test Results	. 14
Table 3-3 Warp Compression Strength Results	. 16
Table 3-4 Warp Compression Modulus Results	
Table 3-5 Warp Tension Strength Results	
Table 3-6 Warp Tension Modulus Results	
Table 3-7 Fill Compression Strength Results	
Table 3-8 Fill Compression Modulus Results	
Table 3-9 Fill Tension Strength Results	
Table 3-10 Fill Tension Modulus Results	
Table 3-11 Lamina Short Beam Strength Results	
Table 3-12 In-Plane Shear 0.2% Offset Strength Results	
Table 3-13 In-Plane Shear Strength at 5% Strain Results	
Table 3-14 In-Plane Shear Modulus Results	
Table 3-15 Open Hole Tension 1 Strength Results	.30
Table 3-16 Open Hole Compression 1 Strength Results	
Table 3-17 Interlaminar Tension Strength Results	
Table 3-18 Curved Beam Strength Results	
Table 3-19 Compression After Impact 1 Strength Results	
Table 3-20 DMA Results	
Table 3-21 Cured Ply Thickness Results	. 39
List of Figures	
Figure 2-1 Type I and Type II errors	8
Figure 3-1 Summary of Strength means and minimums compared to their respective	
Equivalence limits	
Figure 3-2 Summary of Modulus, CPT, and DMA means and Equivalence limits	
Figure 3-3 Warp Compression means, minimums and Equivalence limits	
Figure 3-4 Warp Tension means, minimums and Equivalence limits	
Figure 3-5 Fill Compression means, minimums and Equivalence limits	
Figure 3-6 Fill Tension means, minimums and Equivalence limits	
Figure 3-7 Lamina Short Beam Strength means, minimums and Equivalence limits	
Figure 3-8 In-Plane Shear means, minimums and Equivalence limits	
Figure 3-9 Open Hole Tension means, minimums and Equivalence limits	
Figure 3-10 Open Hole Compression means, minimums and Equivalence limits	
Figure 3-11 Interlaminar Tension and Curved Beam Strength means, minimums and	_
Equivalence limits	. 34
Figure 3-12 Compression After Impact 1 means, minimums and Equivalence limits	
Figure 3-13 DMA Means and Equivalence limits	
Figure 3-14 CPT means, 95% standard error bars and nominal value	
Figure 4-1 Probability of Number of Failures	

1. Introduction

2. Background

Equivalence tests are performed in accordance with section 8.4.1 of CMH-17-1G and section 6.1 of DOT/FAA/AR-03/19, "Material Qualification and Equivalency for Polymer

0.7226. With a high probability of one or more equivalence test failures due to random chance alone, a few failed tests should be allowed and equivalence may still be presumed provided that the failures are not severe.

2.2.4 Strength and Modulus Tests

For strength test values, we are primarily concerned only if the equivalence sample shows lower strength values than the original qualification material. This is referred to as a 'one-sided' hypothesis test. Higher values are not considered a problem, though they may indicate a difference between the two materials. The equivalence sample mean and sample minimum values are compared against the minimum expected values for those statistics, which are computed from the qualification test result.

The expected values are computed using the values listed in Table 2-1 and Table 2-2 according to the following formulas:

The mean must exceed \overline{X} $k_n^{table 2.1}$ S where \overline{X} and S are, respectively, the mean and the standard deviation of the qualification sample.

The sample minimum must exceed \overline{X} $k_n^{table 2.2}$ S where \overline{X} and S are, respectively, the mean and the standard deviation of the qualification sample.

If either the mean or the minimum falls below the expected minimum, the sample is considered to have failed equivalency for that characteristic and the null hypothesis is rejected. The probability of failing either the mean or the minimum test (the level) is set at 5%.

For Modulus values, failure occurs if the equivalence sample mean is either too high or too low compared to the qualification mean. This is referred to as a 'two-sided' hypothesis test. A standard two-sample two-tailed t-test is used to determine if the mean from the equivalency sample is sufficiently far from the qualification sample mean to reject the null hypothesis. The probability of a type I error is set at 5%.

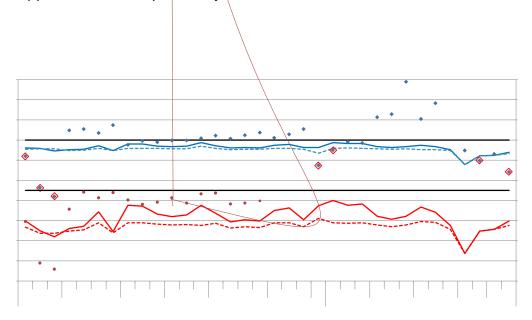
These tests are performed with the HYTEQ spreadsheet, which was designed to test equivalency between two materials in accordance with the requirements of CMH-17-1G section 8.4.1: Tests for determining equivalency between an existing database and a new dataset for the same material. Details about the methods used are documented in the references listed in Section 5.

n	0.25	0.1	0.05	0.025	0.01	0.005	0.0025	0.001	0.0005
2	0.6266	1.0539	1.3076	1.5266	1.7804	1.9528	2.1123	2.3076	2.4457
3	0.5421	0.8836	1.0868	1.2626	1.4666	1.6054	1.7341	1.8919	2.0035
4	0.4818	0.7744	0.9486	1.0995	1.2747	1.3941	1.5049	1.6408	1.7371
5	0.4382	0.6978	0.8525	0.9866	1.1425	1.2488	1.3475	1.4687	1.5546
6	0.4048	0.6403	0.7808	0.9026	1.0443	1.1411	1.2309	1.3413	1.4196
7	0.3782	0.5951	0.7246	0.8369	0.9678	1.0571	1.1401	1.2422	1.3145
8	0.3563	0.5583	0.6790	0.7838	0.9059	0.9893	1.0668	1.1622	1.2298
9	0.3379	0.5276	0.6411	0.7396	0.8545	0.9330	1.0061	1.0959	1.1596
10	0.3221	0.5016	0.6089	0.7022	0.8110	0.8854	0.9546	1.0397	1.1002
11	0.3084	0.4790	0.5811	0.6699	0.7735	0.8444	0.9103	0.9914	1.0490
12	0.2964	0.4593	0.5569	0.6417	0.7408	0.8086	0.8717	0.9493	1.0044
13	0.2856	0.4418	0.5354	0.6168	0.7119	0.7770	0.8376	0.9121	0.9651
14	0.2760	0.4262	0.5162	0.5946	0.6861	0.7488	0.8072	0.8790	0.9300
15	0.2673	0.4121	0.4990	0.5746	0.6630	0.7235	0.7798	0.8492	0.8985
16	0.2594	0.3994	0.4834	0.5565	0.6420	0.7006	0.7551	0.8223	0.8700
17	0.2522	0.3878	0.4692	0.5400	0.6230	0.6797	0.7326	0.7977	0.8440
18	0.2455	0.3771	0.4561	0.5250	0.6055	0.6606	0.7120	0.7753	0.8202
19	0.2394	0.3673	0.4441	0.5111	0.5894	0.6431	0.6930	0.7546	0.7984
20	0.2337	0.3582	0.4330	0.4982	0.5745	0.6268	0.6755	0.7355	0.7782
21	0.2284	0.3498	0.4227	0.4863	0.5607	0.6117	0.6593	0.7178	0.7594
22	0.2235	0.3419	0.4131	0.4752	0.5479	0.5977	0.6441	0.7013	0.7420
23	0.2188	0.3345	0.4041	0.4648	0.5359	0.5846	0.6300	0.6859	0.7257
24	0.2145	0.3276	0.3957	0.4551	0.5246	0.5723	0.6167	0.6715	0.7104
25	0.2104	0.3211	0.3878	0.4459	0.5141	0.5608	0.6043	0.6579	0.6960
26	0.2065	0.3150	0.3803	0.4373	0.5041	0.5499	0.5926	0.6451	0.6825
27	0.2028	0.3092	0.3733	0.4292	0.4947	0.5396	0.5815	0.6331	0.6698
28	0.1994	0.3038	0.3666	0.4215	0.4858	0.5299	0.5710	0.6217	0.6577
29	0.1961	0.2986	0.3603	0.4142	0.4774	0.5207	0.5611	0.6109	0.6463
30	0.1929	0.2936	0.3543	0.4073	0.4694	0.5120	0.5517	0.6006	0.6354

One-sided tolerance factors for limits on sample minimum values											
n	0.25	0.1	0.05	0.025	0.01	0.005	0.0025	0.001	0.0005		
2	1.2887	1.8167	2.1385	2.4208	2.7526	2.9805	3.1930	3.4549	3.6412		
3	1.5407	2.0249	2.3239	2.5888	2.9027	3.1198	3.3232	3.5751	3.7550		
4	1.6972	2.1561	2,4420	2.6965	2.9997	3.2103	3,4082	3.6541	3.8301		
5	1.8106	2.2520	2.5286	2.7758	3.0715	3.2775	3.4716	3.7132	3.8864		
6	1.8990	2.3272	2.5967	2.8384	3.1283	3.3309	3.5220	3.7603	3.9314		
7	1.9711	2.3887	2.6527	2.8900	3.1753	3.3751	3.5638	3.7995	3.9690		
8	2.0317	2.4407	2.7000	2.9337	3.2153	3.4127	3.5995	3.8331	4.0011		
9	2.0838	2.4856	2.7411	2.9717	3.2500	3.4455	3.6307	3.8623	4.0292		
10	2.1295	2.5250	2.7772	3.0052	3.2807	3.4745	3.6582	3.8883	4.0541		
11	2.1701	2.5602	2.8094	3.0351	3.3082	3.5005	3.6830	3.9116	4.0765		
12	2.2065	2.5918	2.8384	3.0621	3.3331	3.5241	3.7054	3.9328	4.0969		
13	2.2395	2.6206	2.8649	3.0867	3.3558	3.5456	3.7259	3.9521	4.1155		
14	2.2697	2.6469	2.8891	3.1093	3.3766	3.5653	3.7447	3.9699	4.1326		
15	2.2975	2.6712	2.9115	3.1301	3.3959	3.5836	3.7622	3.9865	4.1485		
16	2.3232	2.6937	2.9323	3.1495	3.4138	3.6007	3.7784	4.0019	4.1633		
17	2.3471	2.7146	2.9516	3.1676	3.4306	3.6166	3.7936	4.0163	4.1772		
18	2.3694	2.7342	2.9698	3.1846	3.4463	3.6315	3.8079	4.0298	4.1902		
19	2.3904	2.7527	2.9868	3.2005	3.4611	3.6456	3.8214	4.0425	4.2025		
20	2.4101	2.7700	3.0029	3.2156	3.4751	3.6589	3.8341	4.0546	4.2142		
21	2.4287	2.7864	3.0181	3.2298	3.4883	3.6715	3.8461	4.0660	4.2252		
22	2.4463	2.8020	3.0325	3.2434	3.5009	3.6835	3.8576	4.0769	4.2357		
23	2.4631	2.8168	3.0463	3.2562	3.5128	3.6949	3.8685	4.0873	4.2457		
24	2.4790	2.8309	3.0593	3.2685	3.5243	3.7058	3.8790	4.0972	4.2553		
25	2.4941	2.8443	3.0718	3.2802	3.5352	3.7162	3.8889	4.1066	4.2644		
26	2.5086	2.8572	3.0838	3.2915	3.5456	3.7262	3.8985	4.1157	4.2732		
27	2.5225	2.8695	3.0953	3.3023	3.5557	3.7357	3.9077	4.1245	4.2816		
28	2.5358	2.8813	3.1063	3.3126	3.5653	3.7449	3.9165	4.1328	4.2897		
29	2.5486	2.8927	3.1168	3.3225	3.5746	3.7538	3.9250	4.1409	4.2975		
30	2.5609	2.9036	3.1270	3.3321	3.5835	3.7623	3.9332	4.1487	4.3050		

Table 2-2 One-sided tolerance factors for limits on sample minimum values

2.2.5 Modified Coefficient of Variation


A common problem with new material qualifications is that the initial specimens produced and tested do not contain all of t $\,$

lues thatare unreualstic aly high. 1 e1(m wih 5)]TJ8.7359 -1.15 TD-.0001 Tc.0253 Tw(secation8.44.4 of CMH-17-10

EqTf1 816yv Tf-28.0431 -1.552 TD-.0077 Tc-42nT#TI

			CTD	RTD	ETD	ETW	ETW2
		Strength Modulus		Failed by 3.7% Pass with Mod CV		Failed by 20.3% Failed by 0.8%	Failed by 23.9%
		Strength	Pass	Pass		0.870	Pass
		Modulus	Pass	Failed by 0.8%			
		Strength		Pass	Pass	Pass	Pass
		Modulus		Pass	Pass	Failed by 3.3%	
		Strength	Pass	Pass		Pass	Pass
		Modulus	Pass	Pass		Pass with Mod CV	
		0.2% Offset Strength	Pass	Pass			Pass
		5% Strain Strength	Pass Insufficient Data	Pass Insufficient Data			Pass Insufficient Data
		Modulus	Failed by 3.8%	Failed by 5.3%			Failed by 17.6%
Short Beam Strength	No	Strength	Failed by 1.0%	Pass			Pass
Open Hole Compression	Yes	Strength		Pass with Mod CV		Pass Insufficient Data	Pass
Open Hole Tension	Yes	Strength	Pass	Pass			Pass
Interlaminar Tension		Strength		Pass Insufficient Data			Failed by 2.5% Insufficient Data
Curved Beam Strength		Strength		Pass Insufficient Data			Failed by 9.7% Insufficient Data
Compression After Impact	Yes	Strength		Failed by 6.5% Insufficient Data			
Cured Ply Thickness	NA	NA					

A graphical presentation of all test results is shown in Figure 3-1 and Figure 3-2. In order to show different tests on the same graphical scale, all values are plotted as a percentage of the corresponding qualification mean. Figure 3-1 shows the strength means in the upper part of the chart using left axis and the strength minimums in the lower part of the chart using the right axis. This was done to avoid overlap of the two sets of data and equivalency criteria. Figure 3-2 shows the equivalency means plotted with the upper and lower equivalency criteria.

3.1 Warp Compression (WC)

The WC data is normalized by cured ply thickness. The WC strength data failed for all three environmental conditions. Modified CV results were not provided for the ETW2 strength data because the coefficient of variation was above 8% which means that the modified CV results were no different from the results shown.

The WC modulus data passed for the RTD condition with the use of the modified CV approach. The modulus data for the ETW conditions did not pass the equivalency test. ETW2 modulus data was not available for the MH cure cycle.

Statistics and analysis results are shown for the strength data in Table 3-3 and for the modulus data in Table 3-4.

Warp Compression (WC) Strength	R	ΓD	E'I	ΓW	ET	W2
warp Compression (wC) Strength	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.
Data normalized with CPT 0.0079						
Mean Strength (ksi)	99.431	91.349	65.303	49.766	58.451	42.065
Standard Deviation	5.609	4.197	4.659	5.332	4.905	5.330
Coefficient of Variation %	5.641	4.594	7.135	10.714	8.392	12.671
Minimum	85.323	84.038	57.655	41.659	46.474	35.563
Maximum	108.069	96.922	75.378	56.324	64.558	50.878
Number of Specimens	21	8	26	11	18	9
RESULTS	FA	FAIL		FAIL		II L
Minimum Acceptable Equiv. Sample Mean	95.	622	62.	596	55.	306
Minimum Acceptable Equiv. Sample Min	84.	286	52.	213	45.	006
MOD CV RESULTS	FA	${ m I\!L}$	FA	AIL .		
Modified CV %	6.8	321	7.5	567	NA NA	
Minimum Acceptable Equiv. Sample Mean	94.	826	62.	431		11
Minimum Acceptable Equiv. Sample Min	81.	120	51.	420		

Table 3-3 Warp Compression Strength Results

Warp Compression (WC) Modulus	R	ΓD	E	ΓW	ETW2		
warp compression (wc) wrodulus	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	
Data normalized with CPT 0.0079							
Mean Modulus (Msi)	8.321	8.069	8.329	7.839		8.548	
Standard Deviation	0.183	0.140	0.356	0.746		0.538	
Coefficient of Variation %	2.196	1.740	4.280	9.517	NA	6.299	
Minimum	8.018	7.822	7.505	6.935		7.920	
Maximum	8.671	8.237	9.220	9.668		9.364	
Number of Specimens	21	8	26	11		9	
RESULTS	FA	${ m I\!L}$	FAIL				
Passing Range for Modulus Mean	8.173 to	8.468	7.964 to	8.694			
Student's t-statistic	-3	509	-2.	727			
p-value of Student's t-statistic	0.0	002	0.0	010			
MOD CV RESULTS	PASS with	MOD CV	FA	FAIL		A	
Modified CV%	6.0	000	6.1	140			
Passing Range for Modulus Mean	7.949 to 8.692		7.899 t	o 8.758			
Modified CV Student's t-statistic	-1.:	-1.392		-2.317			
p-value of Student's t-statistic	0.1	175	0.026				

Table 3-4 Warp Compression Modulus Results

The WC strength data for the RTD environment failed equivalence due to both the sample mean and sample minimum being too low. The equivalency sample mean (91.349) is 95.53% of the minimum acceptable mean value (95.622) and the equivalency sample minimum (84.038) is 99.71% of the lowest acceptable minimum value (84.286). Under the assumption of the modified CV method, the equivalency sample mean is 96.33% of the minimum acceptable mean value (94.826) and the equivalency sample minimum value is acceptable.

The WC strength data for the ETW environment failed equivalence due to both the mean and minimum being too low. Under the assumption of the modified CV method, the equivalency sample mean (49.766) is 79.71% of the minimum acceptable mean value (62.431) and the equivalency sample minimum (41.659) is 81.02% of the lowest acceptable minimum value (51.420).

The WC strength data for the ETW2 environment failed equivalence due to both the mean and minimum being too low. The modified CV method could not be used due to the CV of the ETW2 condition being greater

Figure 3-3 illustrates the 0° Compression strength means and minimum values and the modulus means for the qualification sample and the equivalency sample. The limits for equivalency samples are shown as error bars with the qualification data. The longer, lighter colored error bars are for the modified CV computations.

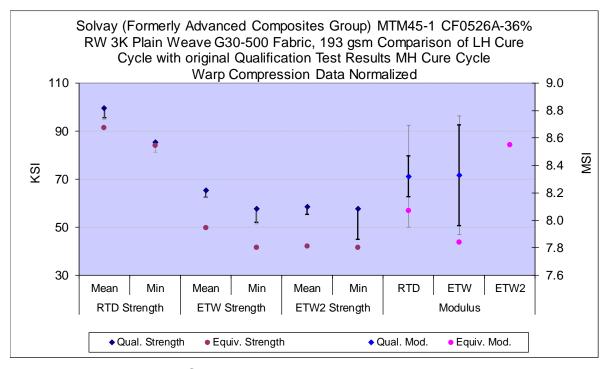


Figure 3-3 Warp Compression means, minimums and Equivalence limits

3.2 Warp Tension (WT)

The WT data is normalized by cured ply thickness. The WT strength data passed the equivalency tests for all the environmental conditions tested. The WT modulus data passed the equivalency test for the CTD condition but not for the RTD condition. ETW2 modulus data was not available for the MH

Figure 3-4 illustrates the 0° Tension str

3.3 Fill Compression (FC)

The FC data is normalized by cured ply thickness. The FC strength data passed the equivalency tests for all four environmental conditions tested. The FC modulus data passed the equivalency tests for the RTD and ETD conditions, but not the ETW condition. ETW2 modulus data was not available for the MH cure cycle. Statistics and analysis results are shown for the strength data in Table 3-7 and for the modulus data in Table 3-8.

	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.
Data normalized with CPT 0.0079								
Mean Strength (ksi)	88.677	92.933	75.424	79.548	58.307	60.410	51.854	55.759
Standard Deviation	6.210	6.985	4.981	4.057	2.323	2.899	3.938	2.689
Coefficient of Variation %	7.003	7.516	6.604	5.100	3.984	4.798	7.594	4.823
Minimum	80.354	80.342	65.296	74.720	53.132	56.103	44.472	51.271
Maximum	101.805	100.862	82.640	86.653	63.701	63.786	59.977	59.082
Number of Specimens	18	8	18	8	18	8	19	8
RESULTS								

Figure 3-5 illustrates the 90° Compression strength means and minimum values and the modulus means for the qualification sample and the equivalency sample. The limits for equivalency samples are shown as error bars with the qualification data. The longer, lighter colored error bars are for the modified CV computations.

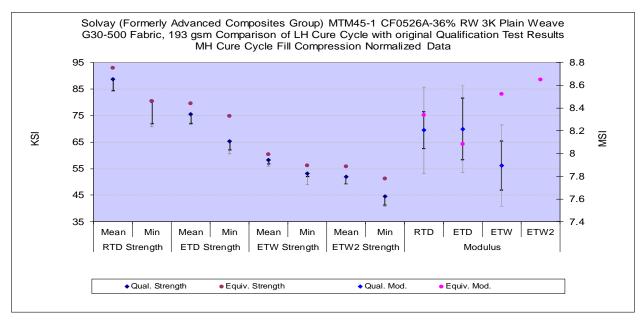


Figure 3-5 Fill Compression means, minimums and Equivalence limits

3.4 Fill Tension (FT)

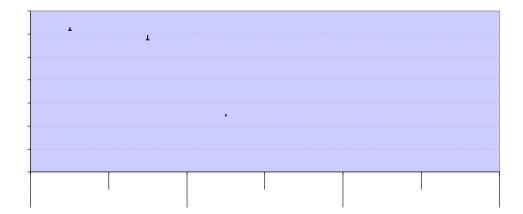
The FT data is normalized by cured ply thickness. The FT strength data passed the equivalency tests for all four environmental conditions tested. The FT modulus data passed for all three conditions where data was available to compare, although the ETW condition passed only with the use of the modified CV approach. ETW2 modulus data was not available for the MH cure cycle. Statistics and analysis results are shown for the strength data in Table 3-9 and for the modulus data in Table 3-10.

Fill Tension (FT) Strength	CT	ſD	R	ΓD	ET	W	ETW2	
rm reision (r 1) Strength	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.
Data normalized with CPT 0.0079								
Mean Strength (ksi)	125.639	128.393	128.257	129.199	117.184	120.060	110.443	114.670
Standard Deviation	5.232	3.330	7.500	4.489	6.342	5.949	6.282	4.537
Coefficient of Variation %	4.165	2.593	5.848	3.475	5.412	4.955	5.688	3.957
Minimum	118.178	123.984	111.989	119.645	108.885	109.781	101.609	104.596
Maximum	133.107	134.798	137.325	134.408	129.016	127.683	122.766	118.824
Number of Specimens	18	8	18	8	19	8	18	8
RESULTS	PA	SS	PASS		PASS		PASS	
Minimum Acceptable Equiv. Sample Mean	122.	.086	123	.164	112.	878	106	.177
Minimum Acceptable Equiv. Sample Min	111.	511	108	.006	100.	061	93.	481
MOD CV RESULTS	PASS with	MOD CV						
Modified CV %	6.082		6.9	924	6.7	06	6.844	
Minimum Acceptable Equiv. Sample Mean	120.450		122	.227	111.849		105.310	
Minimum Acceptable Equiv. Sample Min	105.	.006	104	.280	95.967		90.034	

Table 3-9 Fill Tension Strength Results

Fill Tension (FT) Modulus	C	ſD	RTD		ETW		ETW2		
Fili Tension (F1) Wrodulus	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	
Data normalized with CPT 0.0079									
Mean Modulus (Msi)	9.071	9.156	8.883	8.993	8.636	8.923		9.483	
Standard Deviation	0.272	0.216	0.284	0.090	0.192	0.118		0.365	
Coefficient of Variation %	2.996	2.363	3.194	1.000	2.225	1.319	NA	3.846	
Minimum	8.599	8.861	8.035	8.852	8.258	8.758		9.069	
Maximum	9.395	9.380	9.178	9.107	8.868	9.128		10.088	
Number of Specimens	18	8	18	8	19	8		8	
RESULTS	PA	SS	PASS		FAIL				
Passing Range for Modulus Mean	8.846 to	9.297	8.669 to	o 9.097 8.485 to 8.788		8.788			
Student's t-statistic	0.7	74	1.065		3.8	3.890		1	
p-value of Student's t-statistic	0.4	47	0.2	298	0.0	001			
MOD CV RESULTS	PASS with	MOD CV	PASS with	MOD CV	PASS with	MOD CV	N	Α	
Modified CV%	6.0	000	6.0	000	6.0	000			
Passing Range for Modulus Mean	8.657 t	o 9.486	8.487 t	o 9.279	8.251 t	o 9.022			
Modified CV Student's t-statistic	0.4	120	0.5	575	1.5	529			
p-value of Student's t-statistic	0.6	578	0.5	571	0.139				

Table 3-10 Fill Tension Modulus Results


The FT modulus data for the ETW environment failed the equivalency test because the sample mean value (8.923) is above the upper acceptance limit (8.788). The equivalency sample mean value is 101.53% of the upper limit of acceptable values. Under the assumption of the modified CV method, the modulus data from the ETW environment passed the equivalence test.

3.5 Lamina Short Beam Strength (SBS)

The Short Beam Strength data is not normalized. The SBS data passed for both the ETW and ETW2 environmental conditions, but not the RTD condition. Statistics and analysis results for the SBS data are shown in Table 3-11.

Data as measured		Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.
Data as moustred	Mean Strength (ksi)	10.293	9.777	6.532	6.470	5.241	5.158
	Standard Deviation	0.194	0.145	0.178	0.120	0.132	0.088
	Coefficient of Variation %	1.888	1.485	2.729	1.852	2.515	1.704
	M1.1s.D pa	assed for bot	h the				

Figure 3-7 illustrates the Short Beam Strength means and minimum values for the qualification sample and the equivalency sample. The limits for equivalency samples are shown as error bars with the qualification data. The longer, lighter colored error bars are for the modified CV computations.

3.6 In-Plane Shear (IPS)

The In-Plane Shear data is not normalized. The IPS strength data passes all equivalency tests. However, the strength at 5% strain datasets for all three conditions have insufficient data for the results to be considered conclusive. The IPS modulus data fails the equivalency test for all three environment conditions tested due to the mean modulus value being too high.

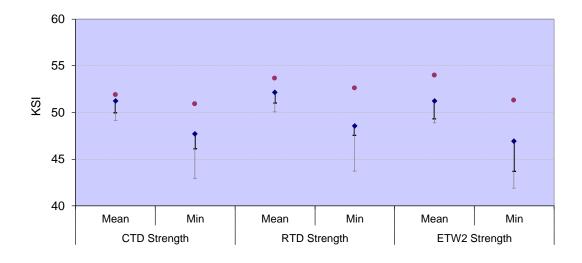
Statt4sTi(xs) 45 dT 4(ra)3/378Sr4sult\$2a5508(On01230e077\2022sul)6 0 TD9.95001 Tc.0023 Tw(mean modul.280.

Qual. Equiv. Qual. Equiv. Qual. Equiv.

Data as measured

Mean Modulus (Msi)

Figure 3-8 illustrates the In-Plane Shear strength means and minimum values and the modulus means for the qualification sample and the equivalency sample. The limits for equivalency samples are shown as error bars with the qualification data. The longer, lighter colored error bars are for the modified CV computations.


3.7 "25/50/25" Open Hole Tension 1 (OHT1)

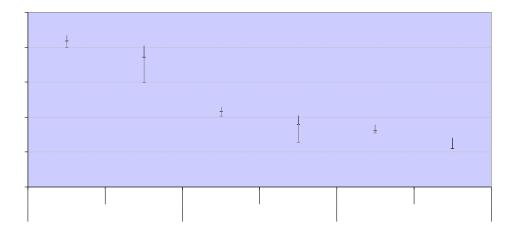
The OHT1 data is normalized by cured ply thickness. The Open Hole Tension normalized strength data passes all equivalency tests. Statistics and analysis results for the OHT1 strength data are shown in Table 3-15.

Open Hole Tension (OHT1)	CTD		RTD		ETW2	
Strength	Qual. Equiv.		Qual.	Equiv.	Qual.	Equiv.
Data normalized with CPT 0.0079						
Mean Strength (ksi)	51.269	51.862	52.164	53.668	51.214	53.983
Standard Deviation	1.897	0.560	1.701	0.644	2.770	1.409
Coefficient of Variation %	3.700	1.079	3.260	1.200	5.410	2.611
Minimum	47.691	50.886	48.549	52.577	46.921	51.297
Maximum	55.038	52.886	54.717	54.867	54.947	55.562
Number of Specimens	18	8	18	8	18	8
RESULTS	PA	SS	PA	SS	PA	SS
Minimum Acceptable Equiv. Sample Mean	49.	981	51.009		49.333	
Minimum Acceptable Equiv. Sample Min	46.147		47.573		43.734	
MOD CV RESULTS	PASS with MOD CV		PASS with MOD CV		PASS with MOD CV	
Modified CV %	6.000		6.000		6.705	
Minimum Acceptable Equiv. Sample Mean	49.180		50.039		48.883	
Minimum Acceptable Equiv. Sample Min	42.	963	43.713		41.943	

Table 3-15 Open Hole Tension 1 Strength Results

Figure 3-9 illustrates the Open Hole Tension strength means and minimum values for the qualification sample and the equivalency sample. The limits for equivalency samples are shown as error bars with the qualification data. The longer, lighter colored error bars are for the modified CV computations.

3.8 "25/50/25" Open Hole Compression 1 (OHC1)


The OHC1 data is normalized by cured ply thickness. The Open Hole Compression data passes all equivalency tests, although the RTD data requires the use of the modified CV approach and the ETW condition has insufficient data for the result to be considered conclusive. Statistics and analysis results for the OHC1 strength data are shown in Table 3-16.

Qual. Equiv. Qual. Equiv. Qual. Equiv. Qual. Equiv.

Data normalized with CPT 0.0079

Mean Strength (ksi)

Figure 3-10 illustrates the Open Hole Compression strength means and minimum values for the qualification sample and the equivalency sample. The limits for equivalency samples are shown as error bars with the qualification data. The longer, lighter colored error bars are for the modified CV computations.

3.9 Interlaminar Tension (ILT) and Curved Beam Strength (CBS)

The Interlaminar Tension and Curved Beam Strength data are not normalized. The ILT and CBS strength data passed equivalency tests for the RTD condition but not for the ETW2 condition. There was insufficient data for these results to be considered conclusive. Modified CV results were not provided for the ILT strength data because the coefficient of variation was above 8% which means that the modified CV results were no different from the results shown.

Statistics and analysis results are shown for the ILT data in Table 3-17 and for the CBS data in Table 3-18.

Interdeminan Tangian (II T) Strongth	\mathbf{R}'	ΓD	ETW2		
Interlaminar Tension (ILT) Strength	Qual.	Equiv.	Qual.	Equiv.	
Data as measured	Insuffic	ient Data	Insufficient Data		
Mean Strength (ksi)	6.596	6.253	2.699	2.424	
Standard Deviation	0.850	0.425	0.224	0.214	
Coefficient of Variation %	12.885	6.796	8.289	8.839	
Minimum	5.911	5.953	2.479	2.204	
Maximum	8.131	6.876	2.984	2.650	
Number of Specimens	6	4	6	4	
RESULTS	PA	SS	FAIL		
Minimum Acceptable Equiv. Sample Mean	5.790		2.487		
Minimum Acceptable Equiv. Sample Min	4.521		2.153		

3.10 Compression After Impact 1 (CAI1)

The CAI1 data is normalized by cured ply thickness. The Compression After Impact normalized strength data was only tested at the RTD condition. The strength data failed the equivalency test, but there was insufficient data for the results to be considered conclusive. Statistics and analysis results for CAI strength data are shown in Table 3-19.

Compression After Impact (CAI)	RTD			
Strength	Qual.	Equiv.		
Data normalized with CPT 0.0079	Insuffic	ient Data		
Mean Strength (ksi)	33.844	29.576		
Standard Deviation	1.126	0.354		
Coefficient of Variation %	3.326	1.197		
Minimum	31.920	29.218		
Maximum	35.229	29.926		
Number of Specimens	8	3		
RESULTS	FA	IL.		
Minimum Acceptable Equiv. Sample Mean	an 32.620			
Minimum Acceptable Equiv. Sample Min	n 31.228			
MOD CV RESULTS	FAIL			
Modified CV %	6.000			
Minimum Acceptable Equiv. Sample Mean	ean 31.637			
Minimum Acceptable Equiv. Sample Min	29.	125		

Table 3-19 Compression After Impact 1 Strength Results

The CAI1 strength data for the RTD environment failed equivalence due to both the sample mean and sample minimum being too low. The equivalency sample mean (29.576) is 90.67% of the minimum acceptable mean value (32.620) and the equivalency sample minimum (29.218) is 93.56% of the lowest acceptable minimum value (31.228). Under the assumption of the modified CV method, the equivalency sample mean is 93.49% of the minimum acceptable mean value (31.637) and the equivalency sample minimum value is acceptable.

3.11 Dynamic Mechanical Analysis (DMA)

DMA is compared for two measurements, the onset of storage modulus and the peak of tangent delta, taken under both wet and dry conditions. These are each tested for equivalency using a pooled two-sample double-sided t-test at a 95% confidence level. The modified CV method is not applied to DMA, but an additional analysis is also made with the allowable range for DMA being set to ±18°F. The DMA data from the LH cure cycle failed equivalency 95% t-tests in the dry condition, but passed equivalency with the use of the ±18°F criteria.

Statistics for both the original qualification material and the equivalency sample are shown in Table 3-20. The average DMA values from both the qualification sample and the equivalency sample are shown in Figure 3-13. The limits for equivalency samples are shown as error bars with the qualification data. The longer, lighter colored error bars are for the range equal to ±18°F computations.

	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.
Mean (°F)	360.358	353.202	397.585	392.428	320.424	318.578	385.610	385.860
Standard Deviation	6.594	3.191	3.950	3.475	5.610	2.982	6.909	3.531
Coefficient of Variation %	1.830	0.904	0.994	0.886	1.751	0.936	1.792	0.915640 TD4CiO

3.12 Cured Ply Thickness (CPT)

The Cured Ply Thickness can be considered equivalent according to the results of a pooled two-sample double-sided t-test at a 95% confidence level. Both the MH (original qualification) and LH (equivalency) cure cycles are shown in Table 3-21. The average CPT with 95% standard error bars is shown in Figure 3-14. The longer, lighter colored error bars are for the modified CV computations.

Cured Ply Thickness (CPT)	Qual.	Equiv.	
Average Cured Ply Thickness	0.008056	0.008014	
Standard Deviation	0.00017	0.00011	
Coefficient of Variation %	2.05131	1.43258	
Minimum	0.00762	0.00783	
Maximum	0.00855	0.00828	
Number of Specimens	133	16	
RESULTS	PASS		
Passing Range for CPT Mean	0.007972 to	0.008140	
Student's t-statistic			
p-value of Student's t-statistic			
MOD CV RESULTS	PASS with	MOD CV	
Modified CV%	6.0	000	
Passing Range for CPT Mean	0.007816 to 0.008297		
Modified CV Student's t-statistic	-0.	346	
p-value of Student's t-statistic	0.7	730	

4. Summary of Results

All the equivalency comparisons are conducted with Type I error probability () of 5% in accordance with FAA/DOT/AR-03/19 report and CMH-17-1G section 8.4.1. It is common to obtain a few or even several failures in a typical equivalency program involving multiple independent property comparisons. In theory, if the equivalency dataset is truly identical to the qualification dataset, we expect to

4.2 Failures

The LH Cure Cycle material has sufficient test results for comparison with the original qualification material test results on a total of 38 different test types and conditions, not including the cured ply thickness and DMA tests.

Using the modified CV method, there were ten failures total. The Warp Compression strength failures in both ETW conditions and the In-Plane Shear Modulus in the ETW2 condition being classified as severe failures according to the scale presented Table 3-1.

- 1. Warp Compression Strength for the RTD condition failed by 3.7%.
- 2. Warp Compression Strength for the ETW condition failed by 20.3%.
- 3. Warp Compression Strength for the ETW2 condition failed by 23.9%.
- 4. Warp Compression Modulus for the ETW condition failed by 0.8%
- 5. Warp Tension Modulus for the RTD condition failed by 0.8%
- 6. Fill Compression Modulus for the ETW condition failed by 3.3%.
- 7. In-Plane Shear Modulus for the CTD condition failed by 3.8%
- 8. In-Plane Shear Modulus for the RTD condition failed by 5.3%
- 9. In-Plane Shear Modulus for the ETW2 condition failed by 17.6%
- 10. Short Beam Strength for the CTD condition failed by 1.0%

Those properties that did not pass equivalency tests should be evaluated regarding the needs of the application to determine if the test results for this equivalency sample will be sufficient for their design/build purposes.

4.3 Pass Rate

Ten failures out of 38 test conditions gives the LH cure cycle a pass rate of 73.68% for these tests. If the equivalency sample came from a material identical to the original qualification material and all tests were independent of all other tests, the expected pass rate would be 95%. This equates to 1.90 failures.

4.4 Probability of Failures

If the equivalency sample came from a material with characteristics identical to the original qualification material and all tests were independent of all other tests, the chance of having ten or more failures is 0.0010%. Figure 4-1 illustrates the probability of getting one or more failures, two or more failures, etc. for a set of 38 independent tests. If the two materials were equivalent, the probability of getting four or more failures is less than 5%. This means that the material could be considered as "not equivalent" with a 95% level of confidence if there were five or more failures out of 38 independent tests.

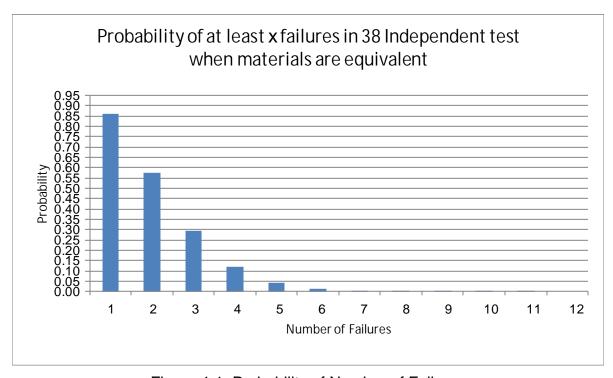


Figure 4-1 Probability of Number of Failures

5. References

- 1. CMH-17 Rev G, Volume 1, 2012. SAE International, 400 Commonwealth Drive, Warrendale, PA 15096
- John Tomblin, Yeow C. Ng, and K. Suresh Raju, "Material Qualification and Equivalency for polymer Matrix Composite Material Systems: Updated Procedure", National Technical Information Service (NTIS), Springfield, Virginia 22161
- 3. Vangel, Mark, "Lot Acceptance and Compliance Testing Using the Sample Mean and an Extremum", Technometrics, Vol 44, NO. 3, August 2002, pp. 242-249